Bài giảng số 18

PHUDNG TRINH LUḌNG GIÁC

Cũng giống như các bài toán về hàm số, các bài toán về phương trình lượng giác là một câu hỏi bắt buộc có mặt trong mọi đề thi về môn Toán vào các trường Đại học, C Cao đẳng các năm 2002-2009.

Bài giảng này đề cập đến các phương pháp giải phương trình lượng giác tùy theo dang của chúng.

Lược đố chung đê giải các phương trình lượng giác được tiến hànli nhur sau:
1/ Đặt điều kiện để phương trình có nighĩa. Ngoài các điều kiện thông thường như đối với mọi phương trình klác (thí dụ như̛ điểu kiện về mẫu số, các biểu thức trong căn của các căn bậc chẵn có mặt trong phương trình...), riêng đối với phương trình lượng giác cần chú ý đặc biệt đến các điều kiện sau:

+ để tan x có nghǐa, điều kiện là $x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$
+ Để cot x có nghĩa, điều kiện là $x \neq k \pi, k \in \mathbb{Z}$.
2/ Giải phương trình bằng các lược đồ quen thuộc.
3/ So sánh nghiệm tìm được với điều kiện đặt ra để loại bỏ đi các nghiệm ngoại lai.

§1. PHUƠNG TRÌNH BẬC NHẤT ĐỐI VỚI SINX VÀ COSX

1. Dạng phuoong trinh: $\operatorname{asin} x+b \cos x=2(a, b \neq 0)$
2. Diều kiện có nghiệm: Phương trình có nghiệm khi và chỉ khi $\mathrm{a}^{2}+\mathrm{b}^{2} \geq \mathrm{c}^{2}$.
3. Cách giải: Có hai cách giải phurơng trình này:

Phurong phíp 1 : Đưa phương trình về dạng:

$$
\begin{equation*}
\frac{a}{\sqrt{a^{2}+b^{2}}} \sin x+\frac{b}{\sqrt{a^{2}+b^{2}}} \cos x=\frac{c}{\sqrt{a^{2}+b^{2}}} \tag{1}
\end{equation*}
$$

Đặt $\cos \varphi=\frac{a}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} ; \sin \varphi=\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$
Khi đó $(1) \Leftrightarrow \sin (x+\alpha)=\sin \alpha$.
Phtoong pháp 2: Xét hai khả năng sau:
$+N$ ếu $b+c=0 \Rightarrow \cos \frac{x}{2}=0$ thỏa mãn phurong trình
$\Rightarrow x=\pi+k 2 \pi, k \in \mathbb{Z}$ thuộc vào tập hợp nghiệm.

+ Nếu $b+c \neq 0 \Rightarrow \cos \frac{x}{2} \neq 0$, khi đó đặt $\tan \frac{x}{2}=t$.

Áp dụng công thức $\sin x=\frac{2 t}{1+t^{2}}, \cos x=\frac{1-t^{2}}{1+t^{2}}$, ta quy phương trình đã cho về phương trình bậc 2 đối với t , sau đó giải $\tan \frac{\mathrm{x}}{2}=\mathrm{t}$

Chúy:

Khi sử dụng phương pháp này người ta thường hay quên xét khả năng $\cos \frac{x}{2}=0$, mà đặt ngay $\tan \frac{\mathrm{x}}{2}=\mathrm{t}$, khi đó sẽ dẫn đến khả năng có thể mất nghiệm của phương trình.

Thí dụ I: (Dề thi tuyển sinh Dại họcc khối D-2007)
Giải phương trình lượng giác: $\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}+\sqrt{3} \cos x=2(1)$.

Giải

Ta có $(1) \Leftrightarrow 1+\sin x+\sqrt{3} \cos x=2 \Leftrightarrow \frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x=\frac{1}{2}$
$\Leftrightarrow \sin \left(x+\frac{\pi}{3}\right)=\sin \frac{\pi}{6} \Leftrightarrow\left[\begin{array}{l}x+\frac{\pi}{3}=\frac{\pi}{6}+k 2 \pi \\ x+\frac{\pi}{3}=\frac{5 \pi}{6}+2 k \pi\end{array} \Leftrightarrow\left[\begin{array}{l}x=-\frac{\pi}{6}+k 2 \pi \\ x=\frac{\pi}{3}+k 2 \pi\end{array}(k \in \mathbb{Z})\right.\right.$
Thí dụ 2: (Dề thi tuyển sinhth Đại họcc khối A - 2009)
Giải phương trình lượng giác:

$$
\begin{equation*}
\frac{(1-2 \sin x) \cos x}{(1+2 \sin x)(1-\sin x)}=\sqrt{3} \tag{1}
\end{equation*}
$$

Giải

Điều kiện đề (1) có nghĩa là $\sin x \neq 1$ và $\sin x \neq \frac{1}{2}$
Khi đó:

$$
\begin{align*}
& (1) \Leftrightarrow \cos x-\sqrt{3} \sin x=\sin 2 x+\sqrt{3} \cos 2 x \\
& \Leftrightarrow \frac{1}{2} \cos x-\frac{\sqrt{3}}{2} \sin x=\frac{1}{2} \sin 2 x+\frac{\sqrt{3}}{2} \cos 2 x \tag{3}\\
& \Leftrightarrow \cos \left(x+\frac{\pi}{3}\right)=\cos \left(2 x-\frac{\pi}{6}\right) \Leftrightarrow x+\frac{\pi}{3}= \pm\left(2 x-\frac{\pi}{6}\right)+k 2 \pi \\
& \Leftrightarrow\left[\begin{array}{l}
x=\frac{\pi}{2}+k 2 \pi \\
x=-\frac{\pi}{18}+k \frac{2 \pi}{3}
\end{array}(k \in \mathbb{Z})\right.
\end{align*}
$$

Để ý rằng nghiệm $x=\frac{\pi}{2}+k 2 \pi$ bị loại (vì không thỏa mãn (2)), và rõ ràng $x=-\frac{\pi}{18}+k \frac{2 \pi}{3}$ thỏa mãn (2) nên nghiệm của (1) là $x=-\frac{\pi}{18}+k \frac{2 \pi}{3}, k \in \mathbb{Z}$.

Nhận xét:
Mặc dù ở đây (1) không có dạng asinx $+b \cos x=c$, nhưng thực chất cảch giải (3) là sử dụng phương pháp của cách giải phương trình $a \sin x+b \cos x=c$, nên ta sắp xếp nó vào dạng này.

Thí dụ 3: (Đ̀̀̀̀ thi tuyền sinh Đại học khối B - 2009)
Giải phương trình lượng giác:

$$
\sin x+\cos x \sin 2 x+\sqrt{3} \cos 3 x=2\left(\cos 4 x+\sin ^{3} x\right)(1)
$$

Giải

Ta có: $(1) \Leftrightarrow \sin x+\cos x \sin 2 x+\sqrt{3} \cos 3 x-2 \sin ^{3} x=2 \cos 4 x$

$$
\begin{aligned}
& \Leftrightarrow \sin x\left(1-2 \sin ^{2} x\right)+\cos x \sin 2 x+\sqrt{3} \cos 3 x=2 \cos 4 x \\
& \Leftrightarrow \sin x \cos 2 x+\cos x \sin 2 x+\sqrt{3} \cos 3 x=2 \cos 4 x \\
& \Leftrightarrow \sin 3 x+\sqrt{3} \cos 3 x=2 \cos 4 x \Leftrightarrow \frac{1}{2} \sin 3 x+\frac{\sqrt{3}}{2} \cos 3 x=\cos 4 x \\
& \Leftrightarrow \cos \left(3 x-\frac{\pi}{6}\right)=\cos 4 x \Leftrightarrow 3 x-\frac{\pi}{6}= \pm 4 x+k 2 \pi \\
& \Leftrightarrow\left[\begin{array}{l}
x=-\frac{\pi}{6}+k 2 \pi \\
x=\frac{\pi}{42}+k \frac{2 \pi}{7}
\end{array}\right.
\end{aligned}
$$

Thí dụ 4: (Dè̀ thi tuyển sinh Dại học khối D - 2009)
Giải phương trình: $\sqrt{3} \cos 5 x-2 \sin 3 x \cos 2 x-\sin x=0$ (1).

Giải

Ta có: $(1) \Leftrightarrow \sqrt{3} \cos 5 x-(\sin 5 x+\sin x)-\sin x=0$

$$
\begin{gathered}
\Leftrightarrow \frac{\sqrt{3}}{2} \cos 5 x-\frac{1}{2} \sin 5 x=\sin x \Leftrightarrow \sin \left(\frac{\pi}{3}-5 x\right)=\sin x \\
\Leftrightarrow\left[\begin{array}{l}
x=\frac{\pi}{18}+k \frac{\pi}{3} \\
x=-\frac{\pi}{6}+k \frac{\pi}{2}
\end{array}(k \in \mathbb{Z})\right.
\end{gathered}
$$

Thi du 5:

Giải phương trình $4\left(\sin ^{4} x+\cos ^{4} x\right)+\sqrt{3} \sin 4 x=2$ (1)

Giai

Ta có: (1)

$$
\begin{aligned}
& \Leftrightarrow 4\left(1-\frac{1}{2} \sin ^{2} 2 x\right)+\sqrt{3} \sin 4 x=2 \\
& \Leftrightarrow 4-2 \frac{1+\cos 4 x}{2}+\sqrt{3} \sin 4 x=2 \Leftrightarrow \sqrt{3} \sin 4 x+\cos 4 x=-1 \\
& \Leftrightarrow \frac{\sqrt{3}}{2} \sin 4 x+\frac{1}{2} \cos 4 x=-\frac{1}{2} \Leftrightarrow \sin \left(4 x+\frac{\pi}{6}\right)=\sin \left(-\frac{\pi}{6}\right) \\
& \Leftrightarrow\left[x=-\frac{\pi}{12}+k \frac{\pi}{2}, k \in \mathbb{Z} .\right. \\
& x=\frac{\pi}{4}+k \frac{\pi}{2}
\end{aligned}
$$

Thí dụ 6: Giải plương trinh: $2 \sqrt{2}(\sin x+\cos x) \cos x=3+\cos 2 x$ (1).

Giải

Ta có: $(1) \Leftrightarrow \sqrt{2} \sin 2 x+\sqrt{2}(1+\cos 2 x)=3+\cos 2 x$

$$
\Leftrightarrow \sqrt{2} \sin 2 x+(\sqrt{2}-1) \cos 2 x=3-\sqrt{2}
$$

Ta có: $(\sqrt{2})^{2}+(\sqrt{2}-1)^{2}=5-2 \sqrt{2}<11-6 \sqrt{2}=(3-\sqrt{2})^{2}$.
Vậy (1) vô nghiệm (vì vi phạm điều kiện $a^{2}+b^{2} \geq c^{2}$)
Thí du! 7: Giải phurong trinh: $\mathrm{x}+\sqrt{13-\mathrm{x}^{2}}+\mathrm{x} \sqrt{13-\mathrm{x}^{2}}=11$.

Giải

+ Nếu $\cos \frac{x}{2}=0$ thì $\sin x=0$ và $\cos x=2 \cos ^{2} \frac{x}{2}-1=1$, khi đó không thỏa mãn phurơng trình.

Vậy $\cos \frac{x}{2} \neq 0$.

+ Vi $\cos \frac{x}{2} \neq 0$, đặt $t=\tan \frac{x}{2}$, từ đó
(1) $\Leftrightarrow(1+\sqrt{3}) \frac{2 t}{1+t^{2}}+(1-\sqrt{3}) \frac{1-t^{2}}{1+t^{2}}=2$

$$
\Leftrightarrow(3+\sqrt{3}) t^{2}-2(1+\sqrt{3}) t+1+\sqrt{3}=0
$$

$$
\Leftrightarrow\left[\begin{array} { l }
{ t = \frac { 1 } { \sqrt { 3 } } } \\
{ t = \frac { 1 + \sqrt { 3 } } { 1 - \sqrt { 3 } } }
\end{array} \Leftrightarrow \left[\begin{array} { l }
{ \operatorname { t a n } \frac { x } { 2 } = \frac { 1 } { \sqrt { 3 } } } \\
{ \operatorname { t a n } \frac { x } { 2 } = - \frac { 1 + \sqrt { 3 } } { 1 - \sqrt { 3 } } }
\end{array} \Leftrightarrow \left[\begin{array}{l}
x=\frac{\pi}{3}+k 2 \pi \\
x=\frac{5 \pi}{6}+k 2 \pi
\end{array},(k \in \mathbb{Z})\right.\right.\right.
$$

Nhận xét: Nếu düng phương pháp $1 /$, sau khi biến đồi

$$
\begin{equation*}
(1) \Leftrightarrow \frac{1+\sqrt{3}}{2 \sqrt{2}} \sin x+\frac{1-\sqrt{3}}{2 \sqrt{2}} \cos x=\frac{1}{\sqrt{2}} \tag{2}
\end{equation*}
$$

Việc giải (2) bằng phương pháp 1 về nguyên tắc thì làm được, nhưng để ra đáp số như trên thi rất khó khăn. Vậy với thí dụ này, phương pháp 2 là thích hợp.

Thi du 8:

Tìm m đề phương trình: $2 \sin \mathrm{x}+\mathrm{m} \cos \mathrm{x}=1-\mathrm{m}$ có nghiệm thuộc $\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$.

Giải

Lập luận như thí dụ 7 , thì $\cos \frac{x}{2} \neq 0 \forall \mathrm{~m}$, vì thế đặt $\mathrm{t}=\tan \frac{\mathrm{x}}{2}$ thì phương trình đã cho có dạng (sau khi biến đổi):

$$
\begin{equation*}
f(t)=t^{2}-4 t+1=2 m \tag{1}
\end{equation*}
$$

Do $x \in\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right] \Rightarrow-1 \leq t \leq 1$
Bài toán đã cho trở thành: Tìm m để hệ (1) (2) có nghiệm.
Ta có $f^{\prime}(t)=2 t-4$ và có bảng biến thiên sau:

\mathbf{t}		1	2
$\mathbf{f}^{\prime}(\mathbf{t})$		-	0
$\mathbf{f}(\mathrm{t})$		6	
		-2	

Từ đó suy ra (1) và (2) cớ nghiệm $\Leftrightarrow-2 \leq 2 \mathrm{~m} \leq 6 \Leftrightarrow-1 \leq \mathrm{m} \leq 3$.
Đó là các giá trị cần tìm của m .
Nhận xét:
Với thí dụ này phương pháp 2 tỏ rõ hiệu lực hơn hẳn phương pháp 1.
Qua các thí dụ trên các bạn chắc đã tự rút ra kết luận khi nào nên sử dụng phương pháp 1, hoặc phương pháp 2.

§2. PHUƠNG TRİNH ĐẨNG CẤP BẬC 2, BẬC 3 ĐỚI VỚI SINX VÀ COSX

1. Dạng phương trình

a/ Phương trình đẳng cấp bậc 2 đối với $\sin x$ và $\cos x$ có dạng

$$
\operatorname{ain}^{2} x+\cos ^{2} x+c \sin x \cos x+d=0
$$

b/ Phương trình đẳng cấp bậc 3 đối với sinx và cosx có dạng

$$
a \sin ^{3} x+b \sin ^{2} x \cos x+c \sin x \cos ^{2} x+d \cos ^{3} x=0 .
$$

Cùng với $b /$ ta xét phương trình đẳng cấp bậc 3 đối với $\sin x$ và $\cos x$ (dạng suy rộng) sau: $a \sin ^{3} x+b \sin ^{2} x \cos x+c \sin x \cos ^{2} x+d \cos ^{3} x+(m \sin x+n \cos x)=0$

2. Cách giải

- Kiểm tra $\cos x=0$ có phải là nghiệm hay không?
- Sau đó xét tiếp trường họ̣p $\cos x \neq 0$. Đặt $\tan x=t$.

Bằng cách chia cả hai vế của phương trình cho $\cos ^{2} x$ với phương trình đẳng cấp bậc hai và cho $\cos ^{3} x$ với phương trình đẳng cấp bậc 3 , ta quy về phương trình bậc hai (hoặc bậc ba) đối với t . Tìm được t , ta giải tiếp phương trình cơ bản: $\tan \mathrm{x}=\mathrm{t}$ ta sẽ đi đến nghiệm x cần tìm.

Thí dụ I: (Đè̀ thi tuyển sinh khối B-2009)

Giải phương trình lượng giác:

$$
\sin ^{3} x-\sqrt{3} \cos ^{3} x=\sin x \cos ^{2} x-\sqrt{3} \sin ^{2} x \cos x(1)
$$

Giải

Nếu $\cos x=0$ thì từ (1) ta có $\sin ^{3} x=0$ và đó là điều vô lý, nên $\cos x \neq 0$.
Do $\cos x \neq 0$, nên chia cả hai vế của (1) cho $\cos ^{3} x$, ta có

$$
\begin{gathered}
\tan ^{3} x-\sqrt{3}-\tan x+\sqrt{3} \tan ^{2} x=0 \Leftrightarrow(\tan x+\sqrt{3})\left(\tan ^{2} x-1\right)=0 \\
\quad \Leftrightarrow\left[\begin{array} { l }
{ \operatorname { t a n } x = - \sqrt { 3 } } \\
{ \operatorname { t a n } x = 1 } \\
{ \operatorname { t a n } x = - 1 }
\end{array} \Leftrightarrow \left[\begin{array} { l }
{ x = - \frac { \pi } { 3 } + k \pi } \\
{ x = \frac { \pi } { 4 } + k \pi } \\
{ x = - \frac { \pi } { 4 } + k \pi }
\end{array} \Leftrightarrow \left[\begin{array}{l}
x=-\frac{\pi}{3}+k \pi \\
x=\frac{\pi}{4}+k \frac{\pi}{2}
\end{array}, k \in \mathbb{Z} .\right.\right.\right.
\end{gathered}
$$

Thi du 2:

Giải phương trình $\sin ^{2} x(\tan x+1)=3 \sin x(\cos x-\sin x)+3$

Giải

Điều kiện để (1) có nghĩa là $\mathrm{x} \neq \frac{\pi}{2}+\mathrm{k} \pi, \mathrm{k} \in \mathbb{Z}(2)$.
Khi đó:
(1) $\Leftrightarrow \sin ^{2} x(\sin x+\cos x)=3 \sin x \cos x(\cos x-\sin x)+3 \sin x$

Do điều kiện (2) nên chia cả hai vế của (3) cho $\cos ^{3} x$ và có

$$
\begin{align*}
& \tan ^{3} x+\tan ^{2} x-3 \tan x+3 \tan ^{2} x-3\left(1+\tan ^{2} x\right)=0 \\
& \Leftrightarrow(\tan x+1)\left(\tan ^{2} x-3\right)=0 \Leftrightarrow\left[\begin{array}{l}
x=-\frac{\pi}{4}+k \pi \\
x= \pm \frac{\pi}{3}+k \pi
\end{array}, k \in \mathbb{Z}\right. \tag{4}
\end{align*}
$$

Rõ ràng (4) thỏa mãn (2), nên là nghiệm của (1).

Thí du 3:

Giải phương trình: $8 \cos ^{3}\left(x+\frac{\pi}{3}\right)=\cos 3 x$ (1).

Giải

Ta có $\cos \left(x+\frac{\pi}{3}\right)=\cos x \cos \frac{\pi}{3}-\sin x \sin \frac{\pi}{3}=\frac{1}{2} \cos -\frac{\sqrt{3}}{2} \sin x$.

Vậy $(1) \Leftrightarrow 8\left(\frac{1}{2} \cos x-\frac{\sqrt{3}}{2} \sin x\right)^{3}=4 \cos ^{3} x-3 \cos x$

$$
\begin{equation*}
\Leftrightarrow \sqrt{3} \sin ^{3} x+\cos ^{3} x+\sqrt{3} \cos ^{2} x \sin x-3 \cos x \sin ^{2} x-\cos x=0 \tag{2}
\end{equation*}
$$

Rõ ràng $\cos x \neq 0$ (vì nếu $\cos x=0 \Rightarrow \sin x=0$: vô 1 í)
$V i ̀$ thế chia cả hai vế của (2) cho $\cos ^{3} x$ và có:

$$
\sqrt{3} \tan ^{3} x+1+\sqrt{3} \tan x-3 \tan ^{2} x-1-\tan ^{2} x=0
$$

$\Leftrightarrow \tan x\left(\sqrt{3} \tan ^{2} x-4 \tan x+\sqrt{3}\right)=0 \Leftrightarrow\left[\begin{array}{l}\tan x=0 \\ \tan x=\frac{\sqrt{3}}{3} \\ \tan x=\sqrt{3}\end{array} \Leftrightarrow\left[\begin{array}{l}x=k \pi \\ x=\frac{\pi}{6}+k \pi, k \in \mathbb{Z} \\ x=\frac{\pi}{3}+k \pi .\end{array}\right.\right.$

Thi du 4:

Giải phương trình: $\sin x+\cos x-4 \sin ^{3} x=0(1)$.

Giài

+ Nếu $\cos x=0$, từ (1) ta có hệ:

$$
\left\{\begin{array} { l }
{ \operatorname { c o s } x = 0 } \\
{ \operatorname { s i n } x - 4 \operatorname { c o s } ^ { 3 } x = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\cos x=0 \\
\sin x=0 ; \sin x= \pm 1
\end{array}\right.\right.
$$

Từ (2) (3) suy ra vô lí. Vậy $\cos x \neq 0$

+ Do $\cos x \neq 0$, nên chia cả hai vế của (1) cho $\cos ^{3} x$ và có

$$
\tan x\left(1+\tan ^{2} x\right)+1+\tan ^{2} x-4 \tan ^{3} x=0 \Leftrightarrow 3 \tan ^{3} x-\tan ^{2} x-\tan x-1=0
$$

$\Leftrightarrow(\tan x-1)\left(3 \tan ^{2} x+2 \tan x+1\right)=0 \Leftrightarrow \tan x=1 \Leftrightarrow x=\frac{\pi}{4}+k \pi, k \in \mathbb{Z}$.

Thi du 5:

Cho phương trình: $\sin ^{2} x+(2 m-2) \sin x \cos x-(m+1) \cos ^{2} x=m(1)$
Tìm m để phương trình (1) có nghiệm

Giải

+ Nếu $\cos x=0$, thì từ (1) ta có: $\left\{\begin{array}{l}\cos x=0 \\ \sin ^{2} x=m\end{array}\right.$
Hệ (2) (3) có nghiệm $\Leftrightarrow \mathrm{m}=1$. Vậy $\mathrm{m}=1$ là một giá trị cần tìm.
+ Nếu $\cos x \neq 0$. Khi đó chia cả hai vế của (1) cho $\cos ^{2} x$ và

$$
\begin{aligned}
(1) & \Leftrightarrow \tan ^{2} x+(2 m-2) \tan x-(m+1)=m+m \tan ^{2} x \\
& \Leftrightarrow(m-1) \tan ^{2} x-2(m-1) \tan x+2 m+1=0(2)
\end{aligned}
$$

Dễ thấy $\Delta^{\prime}=-\mathrm{m}^{2}-\mathrm{m}+2$, vậy $\Delta^{\prime} \geq 0 \Leftrightarrow-2 \leq \mathrm{m}<1($ do $\mathrm{m} \neq 1)$.
Kết hợp lại: $-2 \leq \mathrm{m} \leq 1$ là các giá trị cần tìm của tham số m .
Thí du 6: Cho phương trình: $\mathrm{m} \cos ^{2} \mathrm{x}-4 \sin \mathrm{x} \cos \mathrm{x}+\mathrm{m}-2=0$ (1). Tim m để
(1) có nghiệm thuộc $\left(0 ; \frac{\pi}{4}\right)$.

Giài

Khi $0<x<\frac{\pi}{4}$, thì $\cos x>0$ (nói riêng $\cos x \neq 0$). Vì thế sau khi chia cả hai vế của (1) cho $\cos ^{2} x$ và rút gọn, ta có:
(1) $\Leftrightarrow m\left(\tan ^{2} x+2\right)=2 \tan ^{2} x+4 \tan x+2 \Leftrightarrow \frac{2 \tan ^{2} x+4 \tan x+2}{\tan ^{2} x+2}=m$

Khi $0<x<\frac{\pi}{4}$, thì $0<\tan x<1$. Vậy sau khi đặt $t=\tan x$ bài toán trở thành:
Tìm m để hệ $\left\{\begin{array}{l}f(t)=\frac{2 t^{2}+4 t+2}{t^{2}+2}=m \\ 0<t<1\end{array}\right.$
(2) có nghiệm.

Ta có: $f^{\prime}(t)=\frac{-4\left(t^{2}-t-2\right)}{\left(t^{2}+2\right)^{2}}$ và có bảng biến thiên sau:

t	-1	1 $f^{\prime}(t)$ $f(t)$	

Vậy $1<\mathrm{m}<\frac{8}{3}$ là các giá trị cần tìm.của tham số m .

§3. PHUƠNG TRìNH ĐỚI XỨNG VỚI SIN X VÀ $\operatorname{COS} X$

1. Dạng của phương trình

$$
\begin{array}{r}
a(\sin x+\cos x)^{k}+b(\sin x \cos x)^{m}+c=0 \\
\text { hoặc } \quad a(\sin x-\cos x)^{k}+b(\sin x \cos x)^{m}+c=0
\end{array}
$$

2. Cách giải

- Với phương trình (1) dựa vào hệ thức:

$$
\sin x \cos x=\frac{(\sin x+\cos x)^{2}-1}{2}
$$

sau đó dùng phép thay biến $t=\sin x+\cos x(-\sqrt{2} \leq t \leq \sqrt{2})$.

- Với phương trình (2) dựa vào hệ thức

$$
\sin x \cos x=\frac{1-(\sin x-\cos x)^{2}}{2}
$$

sau đó dùng phép thay biến $t=\sin x-\cos x(-\sqrt{2} \leq t \leq \sqrt{2})$.
Như vậy ta đã quy được (1) (hoặc (2)) về dạng phương trình đại số của t . Sau đó giải phương trình $\sin x+\cos x=t$ để suy ra đáp số cần tìm.

Thí dụ 1: (Đề thi tuyển sinh Đại học khối \boldsymbol{A} - 2007)
Giải phương trình: $\left(1+\sin ^{2} x\right) \cos x+\left(1+\cos ^{2} x\right) \sin x=1+\sin 2 x \quad(1)$.

Giaii

Ta có: (1) $\Leftrightarrow \sin ^{2} x \cos x+\sin x \cos ^{2} x+\sin x+\cos x=(\sin x+\cos x)^{2}$

$$
\begin{align*}
& \Leftrightarrow(\sin x+\cos x)(\sin x \cos x+1-\sin x-\cos x)=0 \\
& \Leftrightarrow\left[\begin{array}{l}
\sin x+\cos x=0 \\
\sin x \cos x+1-(\sin x+\cos x)=0
\end{array}\right. \tag{2}
\end{align*}
$$

Dễ thấy $(2) \Leftrightarrow \sin x=-\cos x \Leftrightarrow \tan x=-1 \Leftrightarrow x=-\frac{\pi}{4}+k \pi, k \in \mathbb{Z}$.
Đặt $\sin x+\cos x=t(\sqrt{2} \leq t \leq 2)$, khi đó (2) có dạng

$$
\begin{aligned}
& \frac{t^{2}-1}{2}+1-t=0 \Leftrightarrow t^{2}-2 t+1=0 \Leftrightarrow t=1 \Leftrightarrow \sin x+\cos x=1 \\
\Leftrightarrow & \sqrt{2} \cos \left(x-\frac{\pi}{4}\right)=1 \Leftrightarrow \cos \left(x-\frac{\pi}{4}\right)=\cos \frac{\pi}{4} \Leftrightarrow\left[\begin{array}{l}
x=k 2 \pi \\
x=\frac{\pi}{2}+k 2 \pi
\end{array}\right.
\end{aligned}
$$

Vậy nghiệm của (1) là $x=-\frac{\pi}{4}+k \pi ; x=k 2 \pi ; x=\frac{\pi}{2}+k 2 \pi k \in \mathbb{Z}$.

Thí du 2:

Giải phương trình: $1+\sin ^{3} x+\cos ^{3} x=\frac{3}{2} \sin 2 x(1)$.

Giải

Ta có $(1) \Leftrightarrow 1+(\sin x+\cos x)\left(\sin ^{2} x-\sin x \cos x+\cos ^{2} x\right)=3 \sin x \cos x$

$$
\Leftrightarrow 1+(\sin x+\cos x)(1-\sin x \cos x)-3 \sin x \cos x=0(2)
$$

Đặt $t=\sin x \cos x(-\sqrt{2} \leq t \leq \sqrt{2})$. Khi đó (2) có dạng

$$
\begin{gathered}
1+t\left(1-\frac{t^{2}-1}{2}\right)-3 \frac{t^{2}-1}{2}=0 \Leftrightarrow t^{3}+3 t^{2}-3 t-5=0 \\
\Leftrightarrow(t+1)\left(t^{2}+2 t-5\right)=0 \Leftrightarrow\left[\begin{array}{l}
t=-1 \\
t=-1-\sqrt{6}<-\sqrt{2} \quad \text { (loaii) } \\
t=-2+\sqrt{6}>\sqrt{2} \quad \text { (loai) }
\end{array}\right.
\end{gathered}
$$

Vậy $\sin x+\cos x=-1 \Leftrightarrow \cos \left(x-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}=\cos \frac{3 \pi}{4} \Leftrightarrow\left[\begin{array}{l}x=\pi+k 2 \pi \\ x=-\frac{\pi}{2}+k 2 \pi\end{array}, k \in \mathbb{Z}\right.$.

Thi du 3:

Giải phương trình $1+\tan x=2 \sqrt{2} \sin x$

Giải

Điều kiện để (1) có nghĩa là $x \neq \frac{\pi}{2}+\mathrm{k} \pi, \mathrm{k} \in \mathbb{Z}$
Khi đó (1) $\Leftrightarrow 1+\frac{\sin x}{\cos x}=2 \sqrt{2} \sin x \Leftrightarrow \sin x+\cos x-2 \sqrt{2} \sin x \cos x$
Đặt $\mathbf{t}=\sin \mathrm{x}+\cos \mathrm{x}(-\sqrt{2} \leq \mathbf{t} \leq \sqrt{2})$. Khi đó (3) có dạng:

$$
\mathbf{t}-2 \sqrt{2} \frac{\mathbf{t}^{2}-1}{2}=0 \Leftrightarrow \sqrt{2}+\mathbf{t}^{2}-\mathbf{t}-\sqrt{2}=0 \Leftrightarrow\left[\begin{array}{l}
\mathrm{t}=\sqrt{2} \\
\mathrm{t}=-\frac{1}{\sqrt{2}}
\end{array}\right.
$$

+ Nếu $t=\sqrt{2}$, ta có $\sin x+\cos x=\sqrt{2} \Leftrightarrow \cos \left(x-\frac{\pi}{4}\right)=1 \Leftrightarrow x=\frac{\pi}{4}+k 2 \pi, k \in \mathbb{Z}$.
+ Nếu $t=-\frac{1}{\sqrt{2}}$, ta có $\sin x+\cos x=-\frac{1}{\sqrt{2}}$

$$
\Leftrightarrow \cos \left(x-\frac{\pi}{4}\right)=-\frac{1}{2}=\cos \frac{2 \pi}{3} \Leftrightarrow\left[\begin{array}{l}
x=\frac{11 \pi}{12}+k 2 \pi \\
x=-\frac{5 \pi}{12}+k 2 \pi
\end{array}, k \in \mathbb{Z}\right.
$$

Vậy phương trình có ba họ nghiệm như trên

Thi du 4:

Giaii phương trinh: $|\sin x-\cos x|+4 \sin 2 x=1(1)$.

Giải

Đặt $t=\sin x-\cos x(-\sqrt{2} \leq t \leq \sqrt{2})$, khi đó (1) có dạng

$$
|t|+4\left(1-t^{2}\right)=1(2)
$$

$$
\Leftrightarrow \sin 2 x=0 \Leftrightarrow x=\frac{k \pi}{2}, k \in \mathbb{Z}
$$

Thi du 5:

Cho phương trình $\sin ^{3} \mathrm{x}-\cos ^{3} \mathrm{x}=\mathrm{m}(1)$. Tìm m để phương trình có nghiệm.

Giải

Ta có $(1) \Leftrightarrow(\sin x-\cos x)(1+\sin x \cos x)=m(2)$.
Đặt $t=\sin x-\cos x(-\sqrt{2} \leq t \leq \sqrt{2})$ khi đó (2) có dạng:

$$
t\left(1+\frac{1-t^{2}}{2}\right)=m \Leftrightarrow-t^{3}+3 t=2 m
$$

Bài toán trở thành: Tìm m để hệ:

$$
\left\{\begin{array}{l}
f(t)=-t^{3}+3 t=2 m \tag{3}\\
-\sqrt{2} \leq t \leq \sqrt{2}
\end{array}\right.
$$

Ta có $f^{\prime}(t)=-3 t^{2}+3$ và có bảng biến thiên sau:

t	$-\sqrt{2}$	-1		+	1	$\sqrt{2}$	
$\mathrm{f}^{\prime}(\mathrm{t})$		-	0	+	0	-	

Vậy (3) và (4) có nghiệm, tức là (1) có nghiệm khi và chì khi:

$$
-2 \leq 2 m \leq 2 \Leftrightarrow-1 \leq m \leq 1 .
$$

§4. PHƯONG TRÌNH LỰ̛NG GIÁC SỬ DỤNG NHIỂU ĐẾN PHÉP BIẾN ĐỞI LỰ̛NG GIÁC

Nhìn chung khi đứng trước một phương trình lượng giác đã cho, nếu như thấy phương trình ấy không thuộc vào các dạng cơ bản đã nêu trong các mục $\S 1, \S 2$, $\S 3$ ở trên, thì trước hết cần phải dùng các phép biến đổi lượng giác thông dụng (công thức cộng, công thức nhân, biến đồi tổng thành tích, tích thành tổng, công thức hạ bậc...) để̉ đưa phương trình ban đầu về các dạng cơ bản ở trên, hoặc đưa về phương trình tích mà mỗi thừa số có dạng phương trình cơ bản.

Đây là phương pháp phổ thồng nhất và rất có hiệu quả để giải phương trình lượng giác.

Xét các thí d μ sau:
Thí dụ 1: (\#è̀ thi tuyển sinh Đại hoc khối D-2008)
Giải phương trình: $2 \sin x(1+\cos 2 x)+\sin 2 x=1+2 \cos x(1)$.

Giải

Ta có $(1) \Leftrightarrow 4 \sin x \cos ^{2} x+2 \sin x \cos x-(1+2 \cos x)=0$
$\Leftrightarrow 2 \sin x \cos x(1+2 \cos x)-(1+2 \cos x)=0$
$\Leftrightarrow(2 \cos x+1)(\sin 2 x-1)=0$

$$
\Leftrightarrow\left[\begin{array} { l }
{ \operatorname { c o s } x = - \frac { 1 } { 2 } } \\
{ \operatorname { s i n } 2 x = 1 }
\end{array} \Leftrightarrow \left[\begin{array}{l}
x= \pm \frac{2 \pi}{3}+k 2 \pi \\
x=\frac{\pi}{4}+k \pi
\end{array}, k \in \mathbb{Z}\right.\right.
$$

Thí dụ 2: (\#ề thi tuyển sinh Đại học khối B-2007)
Giải phương trình lượng giác: $2 \sin ^{2} 2 x+\sin 7 x-1=\sin x(1)$.

Giải

Ta có (1) $\Leftrightarrow\left(2 \sin ^{2} 2 x-1\right)+(\sin 7 x-\sin x)=0$

$$
\Leftrightarrow-\cos 4 x+2 \cos 4 x \sin 3 x=0 \Leftrightarrow \cos 4 x(2 \sin 3 x-1)=0
$$

$$
\Leftrightarrow\left[\begin{array} { l }
{ \operatorname { c o s } 4 x = 0 } \\
{ \operatorname { s i n } 3 x = \frac { 1 } { 2 } }
\end{array} \Leftrightarrow \left[\begin{array}{l}
x=\frac{k \pi}{2} \\
x=\frac{\pi}{18}+k \frac{2 \pi}{3}, k \in \mathbb{Z} \\
x=\frac{5 \pi}{18}+k \frac{2 \pi}{3}
\end{array}\right.\right.
$$

Thi dụ 3: ($($ ề thi tuyển sinh Đại học khối A - 2006)
Giải phương trình: $\frac{2\left(\sin ^{6} x+\cos ^{6} x\right)-\sin x \cos x}{\sqrt{2}-2 \sin x}=0$
Giải
Để (1) có nghĩa cần có $\sin x \neq \frac{\sqrt{2}}{2}$
Khi đó $(1) \Leftrightarrow 2\left(1-\frac{3}{4} \sin ^{2} 2 x\right)-\frac{1}{2} \sin 2 x=0$
$\Leftrightarrow 3 \sin ^{2} 2 x+\sin 2 x-4=0 \Leftrightarrow\left[\begin{array}{l}\sin 2 x=1 \\ \sin 2 x=-\frac{4}{3}\end{array} \quad\left(\sin 2 x=-\frac{4}{3}\right.\right.$ loai vi $\left.|\sin 2 x| \geq 1\right)$
$\Leftrightarrow \sin 2 x=1 \Leftrightarrow x=\frac{\pi}{4}+k \pi, k \in \mathbb{Z}$
Kết hợp (2) và (3) suy ra $x=\frac{5 \pi}{4}+k 2 \pi, k \in \mathbb{Z}$ là nghiệm cần tìm.
Thí dụ 4: (Dề thi tuyển sinh Đ̣ai hẹc khối A-2005)
Giải phương trình: $\cos ^{2} 3 x \cos 2 x-\cos ^{2} x=0(1)$

Giải

Áp dụng công thức "hạ bậc", ta có:

$$
\begin{aligned}
& (1) \Leftrightarrow \frac{1+\cos 6 x}{2} \cos 2 x-\frac{1+\cos 2 x}{2}=0 \\
\Leftrightarrow & \cos 6 x \cos 2 x=1 \Leftrightarrow\left(4 \cos ^{3} 2 x-3 \cos 2 x\right) \cos 2 x=1 \\
\Leftrightarrow & 4 \cos ^{4} 2 x-3 \cos ^{2} 2 x-1=0 \Leftrightarrow \cos ^{2} 2 x=1 \\
\Leftrightarrow & 1+\cos 4 x=2 \Leftrightarrow \cos 4 x=1 \Leftrightarrow x=k \frac{\pi}{2}, k \in \mathbb{Z} .
\end{aligned}
$$

Thi dụ 5: (Dề thi tuyển sinh Đại hẹc khối D-2003)
Giải phương trình: $\sin ^{2}\left(\frac{x}{2}-\frac{\pi}{4}\right) \tan ^{2} x-\cos ^{2} \frac{x}{2}=0$ (1).

Giải

Điều kiện để (1) có nghĩa là $x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$ (2)
Áp dụng công thức "hạ bậc", ta có:

$$
\begin{aligned}
(1) & \Leftrightarrow \frac{1-\cos \left(x-\frac{\pi}{2}\right)}{2} \cdot \frac{1-\cos ^{2} x}{\cos ^{2} x}-\frac{1+\cos x}{2}=0 \\
& \Leftrightarrow(1-\sin x)(1-\cos x)(1+\cos x)-\cos ^{2} x(1+\cos x)=0 \\
& \Leftrightarrow(1+\cos x)(1-\sin x)(\sin x+\cos x)=0
\end{aligned} \quad \begin{aligned}
& \Leftrightarrow\left[\begin{array} { l }
{ \operatorname { c o s } x = 1 } \\
{ \operatorname { s i n } x = 1 } \\
{ \operatorname { t a n } x = 1 }
\end{array} \Leftrightarrow \left[\begin{array}{l}
x=\pi+k 2 \pi \\
x=\frac{\pi}{2}+k 2 \pi \\
x=-\frac{\pi}{4}+k \pi
\end{array}(3), k \in \mathbb{Z} .\right.\right.
\end{aligned}
$$

Từ (2) và (3) suy ra: $x=\pi+k 2 \pi ; x=-\frac{\pi}{4}+k \pi, k \in \mathbb{Z}$.
Thi du 6
Giải phương trinh: $(1-\tan x)(1+\sin 2 x)=1+\tan x(1)$

Giải

Điều kiện đề (1) có nghĩa là $\mathrm{x} \neq \frac{\pi}{2}+\mathrm{k} \pi, \mathrm{k} \in \mathbb{Z}$ (2)
Khi đó $(1) \Leftrightarrow(1-\tan x)\left(1+\frac{2 \tan x}{1+\tan ^{2} x}\right)=1+\tan x \Leftrightarrow 2 \tan ^{2} x(1+\tan x)=0$

$$
\Leftrightarrow\left[\begin{array} { l }
{ \operatorname { t a n } x = 0 } \\
{ \operatorname { t a n } x = - 1 }
\end{array} \Leftrightarrow \left[\begin{array}{l}
x=k \pi \\
x=-\frac{\pi}{4}+k \pi
\end{array}, k \in \mathbb{Z} .\right.\right.
$$

Thi du 7:

Giải phương trình: $2 \sin 3 x\left(1-4 \sin ^{2} x\right)=1(1)$.

Giải

Dễ thấy $\cos x=0$ không thỏa mãn (1), từ đó
(1) $\Leftrightarrow 2 \sin 3 x \cos x\left[1-4\left(1-\cos ^{2} x\right)\right]=\cos x \Leftrightarrow 2 \sin 3 x\left(4 \cos ^{3} x-3 \cos x\right)=\cos x$
$\Leftrightarrow 2 \sin 3 x \cos 3 x=\cos x \Leftrightarrow \sin 6 x=\sin \left(\frac{\pi}{2}-x\right) \Leftrightarrow\left[\begin{array}{l}x=\frac{\pi}{14}+k \frac{2 \pi}{7} \\ x=\frac{\pi}{10}=k \frac{2 \pi}{5}\end{array}, k \in \mathbb{Z}\right.$.

§5: NGHIỆM CỦA PHUOONG TRİNH LỰ̛NG GIÁC THUƠCC MỚT MIỂN CHO TRUỚC

Bài toán đòi hơi tìm nghiệm của phương trình lượng giác trong một miền cụ thể cho truớc. Với các bài toán này, phương pháp giải được tiến hành theo các bước sau:

1/ Giải phương trình lượng giác như bình thường.
2/ Với nghiệm tìm được, đề xác định số k trong công thức nghiệm ta phải giai một bất phương trình (tìm nghiệm nguyên).

3/ Thay giá trị k tìm được vào công thức nghiệm tìm được ở bước 1 .

Tìm nghiệm thuộc khoảng $(0 ; 2 \pi)$ của phương trình:

$$
5\left(\sin x+\frac{\cos 3 x+\sin 3 x}{1+2 \sin 2 x}\right)=3+\cos 2 x
$$

Giải

Điều kiện để (1) có nghiệm là $\sin 2 x \neq-\frac{1}{2}$ (2).
Khi đó $(1) \Leftrightarrow 5 \frac{\sin x+2 \sin 2 x \sin x+\cos 3 x+\sin 3 x}{1+2 \sin 2 x}=3+\cos 2 x$
$\Leftrightarrow 5 \frac{\sin x+\cos x-\cos 3 x+\sin 3 x+\cos 3 x}{1+2 \sin 2 x}=3+\cos 2 x \Leftrightarrow 5 \cos x=3+2 \cos ^{2} x-1$
$\Leftrightarrow 2 \cos ^{2} x-5 \cos x+2=0 \Leftrightarrow \cos x=\frac{1}{2}$ (loai $\cos x=2$) $\Leftrightarrow x= \pm \frac{\pi}{3}+k 2 \pi, k \in \mathbb{Z}$.

+ Ta có: $0<\frac{\pi}{3}+\mathrm{k} 2 \pi<2 \pi \Leftrightarrow-\frac{1}{6}<\mathrm{k}<\frac{5}{6} \Leftrightarrow \mathrm{k}=0$ (do k nguyên).
+ Lại có $0<-\frac{\pi}{3}+k 2 \pi<2 \pi \Leftrightarrow \frac{1}{6}<k<\frac{7}{6} \Leftrightarrow k=1$ (do k nguyên).
Vậy $x=\frac{\pi}{3}$ và $x=\frac{5 \pi}{3}$ là hai nghiệm thuộc $(0 ; 2 \pi)$ của (1).
Thi dụ 2: (Đề thi tuyền sinh Đại hẹc khối D - 2002)
Tìm nghiệm thuộc $[0 ; 14]$ của phương trình $\cos 3 x-4 \cos 2 x+3 \cos x-4=0(1)$

Giải

Ta có (1) $\Leftrightarrow 4 \cos ^{3} x-3 \cos x-4\left(2 \cos ^{2} x-1\right)+3 \cos x-4=0$

$$
\Leftrightarrow \cos ^{2} x(\cos x-2)=0 \Leftrightarrow \cos x=0 \Leftrightarrow x=\frac{\pi}{2}+k \pi, k \in \mathbb{Z}
$$

Ta có $0 \leq \frac{\pi}{2}+\mathrm{k} \pi \leq 14 \Leftrightarrow 0 \leq \frac{1}{2}+\mathrm{k} \leq \frac{14}{\pi} \Leftrightarrow-\frac{1}{2} \leq \mathrm{k} \leq \frac{14}{\pi}-\frac{1}{2}<4$.
Do $k \in \mathbb{Z}$ nên $k \in\{1,2,3,0\}$. Thay lại vào (2) và thấy trên [0;14], (1) có 4 nghiệm sau: $\mathrm{x}_{1}=\frac{\pi}{2} ; \mathrm{x}_{2}=\frac{3 \pi}{2} ; \mathrm{x}_{3}=\frac{5 \pi}{2} ; \mathrm{x}_{4}=\frac{7 \pi}{2}$.

Thí du 3: Cho phương trình $\cos 2 x-\tan ^{2} x=\frac{\cos ^{2} x-\cos ^{2} x-1}{\cos ^{2} x}$ (1).
Tìm tồng các nghiệm của (1) trên [1;70].

Giải

Điều kiện đề (1) có nghiệm. là $x \neq \frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
Khi đó (1) $\Leftrightarrow \cos 2 x-\tan ^{2} x=1-\cos x-\left(1+\tan ^{2} x\right)$
$\Leftrightarrow \cos 2 x=-\cos x \Leftrightarrow 2 \cos ^{2} x+\cos x-1=0$
$\Leftrightarrow\left[\begin{array}{l}\cos x=-1 \\ \cos x=\frac{1}{2}\end{array} \Leftrightarrow x=\frac{\pi}{3}+k \frac{2 \pi}{3}, k \in \mathbb{Z}\right.$ (2)
Ta xem trên đoạn $[1 ; 70]$ có bao nhiêu nghiệm dạng (2)
Ta có: $1 \leq \frac{\pi}{3}+\mathrm{k} \frac{2 \pi}{3} \leq 70 \Leftrightarrow \frac{3}{\pi}<2 \mathrm{k}+1<\frac{210}{\pi} \Leftrightarrow \frac{1}{2}\left(\frac{3}{\pi}-1\right)<\mathrm{k}<\frac{1}{2}\left(\frac{210}{\pi}-1\right)$
Do k nguyên nên $k=0 ; 1 ; 2 ; 3 \ldots ; 32$.
Vậy trên $[1 ; 70]$ có 33 nghiệm dạng (2). Chúng lập thành một cấp số cộng với $u_{1}=\frac{\pi}{3}$ và công sai $d=\frac{2 \pi}{3}$
Vậy tồng S các nghiệm này là: $S=\frac{\left[2 u_{1}+(n-1) d\right] n}{2}=363 \pi$ (ở đây $\mathrm{u}_{1}=\frac{\pi}{3} ; \mathrm{d}=\frac{2 \pi}{3}$ và $\mathrm{n}=33$).

BÀI TẬP TỰGIȦI

Bài 1: Giäi phương trình lương giác: $4 \sin ^{3} x-1=3 \sin x-\sqrt{3} \cos 3 x$.
Đáp số: $\mathrm{x}=\frac{\pi}{18}+\mathrm{k} \frac{2 \pi}{3} ; \mathrm{x}=\frac{\pi}{2}+\mathrm{k} \frac{2 \pi}{3}, \mathrm{k} \in \mathbb{Z}$.

Bài 2:

Giải phương trình lượng giác: $2 \sin 4 x+3 \cos 2 x+16 \sin ^{3} x \cos x-5=0$.
Đáp số: $\mathrm{x}=\frac{\pi}{4}-\frac{\alpha}{2}+\mathrm{k} \pi, \mathrm{k} \in \mathbb{Z}$ với $\cos \alpha=\frac{4}{5}$ và $\sin \alpha=\frac{3}{5}$.

Bài 3:

Giải phương trình lượng giác: $\sin 3 x+(\sqrt{3}-2) \cos 3 x=1$.
Đáp số: $x=\frac{\pi}{6}+k \frac{2 \pi}{3}$ và $x=\frac{2 \pi}{9}+k \frac{2 \pi}{3}, k \in \mathbb{Z}$.
Bài 4: Giải phương trình lượng giác: $4 \sin ^{3} x+3 \cos ^{3} x-3 \sin x-\sin ^{2} x \cos x=0$.
Đáp số: $\mathrm{x}=\frac{\pi}{4}+\mathrm{k} \pi ; \mathrm{x}= \pm \frac{\pi}{3}+\mathrm{k} \pi, \mathrm{k} \in \mathbb{Z}$.

Bài 5:

Giải phương trình lượng giác: $\sqrt{2} \sin ^{3} x\left(x+\frac{\pi}{4}\right)=2 \sin x$.
Đáp số: $\mathrm{x}=\frac{\pi}{4}+\mathrm{k} \pi, \mathrm{k} \in \mathbb{Z}$.

Bài 6:

Giải phương trình lượng giác $\sin x-\cos x+7 \sin 2 x=1$.
Đáp số: $\mathrm{x}=\frac{\pi}{2}+\mathrm{k} 2 \pi ; \mathrm{x}=\pi+\mathrm{k} 2 \pi ; \mathrm{x}=\frac{\pi}{4}-\alpha+\mathrm{k} 2 \pi ; \mathrm{x}=\frac{5 \pi}{4}+\alpha+\mathrm{k} 2 \pi ; \mathrm{k} \in \mathbb{Z}$,
ở đây $\sin \alpha=\frac{3 \sqrt{2}}{7}$.

Bài 7:

Giải phương trình lượng giác $\sin 2 x+\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)=1$.
Đáp số: $\mathrm{x}=\frac{\pi}{4}+\mathrm{k} \pi ; \mathrm{x}=\frac{\pi}{2}+\mathrm{k} 2 \pi ; \mathrm{x}=\pi+\mathrm{k} 2 \pi, \mathrm{k} \in \mathbb{Z}$.

Bài 8:

Tìm m để phương trình: $\sin 2 x+4(\cos x-\sin x)=m$ có nghiệm.
Đáp số: $-4 \sqrt{2}-1 \leq m \leq 4 \sqrt{2}-1$.

Bài 9:

Giải phương trình lượng giác: $\cos 2 x+5=2(2-\cos x)(\sin x-\cos x)$.
Dáp số: $\mathrm{x}=\frac{\pi}{2}+\mathrm{k} 2 \pi ; \mathrm{x}=\pi+\mathrm{k} 2 \pi, \mathrm{k} \in \mathbb{Z}$.

Bài 10:

Giải phương trình lượng giác: $\sin ^{3} x+\cos ^{3} x=2\left(\sin ^{5} x+\cos ^{5} x\right)$.
Đáp số: $x=\frac{\pi}{4}+k \frac{\pi}{2} ; x=\frac{\pi}{4}+k \pi, k \in \mathbb{Z}$.

Bài 11:

Giải phương trình lượng giác: $2 \cos 2 x-8 \cos x+7=\frac{1}{\cos x}$.
Đáp số: $x=k 2 \pi ; x= \pm \frac{\pi}{3}+k 2 \pi, k \in \mathbb{Z}$
Bài 12: Tìm nghiệm thuộc khoảng $(-2 ; 4)$ của phương trình:

$$
\sin x \cos 4 x+2 \sin ^{2} 2 x=1-4 \sin ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)
$$

Dáp số: $\mathrm{x}=\frac{\pi}{2}$.

